University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

> B.Sc. M.Sci.

Mathematics M12B: Algebra 2

COURSE CODE : MATHM12B

UNIT VALUE : 0.50

DATE : 16-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Give the definition of a group, defining the terms you use. Prove that in any group the identity element is unique, and each element has a unique inverse.
(b) Determine whether or not the following sets G under the given operation * are groups, justifying your answer:
(i) $G=\mathbb{R}-\{-2\}, a \star b=a b+2 a+2 b+2$,
(ii) $G=\mathbb{R}, a \star b=a-b$,
(iii) $G=\{x \in \mathbb{R}: x \geq 0\}, a \star b=+\sqrt{a^{2}+b^{2}}$.
2. (a) State (do not prove) Lagrange's Theorem. Hence prove that in a finite group G the order of any element divides the order of the group.
(b) Deduce that for any prime p if $a \not \equiv 0(\bmod p)$ then $a^{p-1} \equiv 1(\bmod$ p).
(c) Find $2^{3599}(\bmod 37)$.
(d) Find an number x such that $x^{7} \equiv 2(\bmod 37)$
3. (a) Stating clearly any results you use, prove that for any two $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
(b) Find det $\left(\begin{array}{lll}a & b & b \\ b & a & b \\ b & b & a\end{array}\right)$, expressing your answer as a product of linear factors.
4. (a) Let A be an $n \times n$ matrix over \mathbb{R}. Give the definition of:
(i) an eigenvalue λ of A;
(ii) an eigenvector corresponding to λ;
(iii) the eigenspace E_{λ} of A;
(iv) A is diagonalizable (over \mathbb{R}). State (do not prove) the basic criterion for a matrix to be diagonalisable.
(b) Let $\lambda_{i}(i=1, . ., r)$ be the distinct eigenvalues of A; prove that the sum $\sum_{i=1}^{r} E_{\lambda_{i}}$ is direct. Deduce that if $\sum_{i=1}^{r} \operatorname{dim}\left(E_{\lambda_{i}}\right)=n$ then A is diagonalisable.
(c) Prove that the following matrix is diagonalisable:
$\left(\begin{array}{cccc}2 & 0 & 2 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ -2 & 0 & -2 & -2\end{array}\right)$
5. Let $A=\left(\begin{array}{cc}3 / 2 & -1 \\ 1 / 2 & 0\end{array}\right)$.
(i) Find an invertible matrix P such that $P^{-1} A P$ is diagonal.
(ii) Find A^{n} for $n \in \mathbf{N}$
(iii) Solve the system of difference equations

$$
\begin{aligned}
& x_{n+1}=\frac{3}{2} x_{n}-y_{n} \\
& y_{n+1}=\frac{1}{2} x_{n}
\end{aligned}
$$

given that $x_{0}=0, y_{0}=1$.
Find the limit, as $n \longrightarrow \infty$ of x_{n}.
6. (a) Let A be a real symmetric matrix and let \mathbf{u}, \mathbf{v} be eigenvectors associated to the (real) eigenvalues λ and μ respectively, where $\lambda \neq \mu$. Prove that \mathbf{u} and \mathbf{v} are orthogonal vectors.
(b) Let $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$. Find an orthogonal matrix P such that $P^{-1} A P$ is diagonal.

