

UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M12B: Algebra 2

COURSE CODE	: MATHM12B
UNIT VALUE	: 0.50
DATE	: 16-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. (a) Give the definition of a group, defining the terms you use. Prove that in any group the identity element is unique, and each element has a unique inverse.

(b) Determine whether or not the following sets G under the given operation \star are groups, justifying your answer:

(i)
$$G = \mathbb{R} - \{-2\}, a \star b = ab + 2a + 2b + 2,$$

(ii) $G = \mathbb{R}, a \star b = a - b,$
(iii) $G = \{x \in \mathbb{R} : x \ge 0\}, a \star b = \pm \sqrt{a^2 \pm b^2}.$

2. (a) State (do not prove) Lagrange's Theorem. Hence prove that in a finite group G the order of any element divides the order of the group.

(b) Deduce that for any prime p if $a \not\equiv 0 \pmod{p}$ then $a^{p-1} \equiv 1 \pmod{p}$.

(c) Find 2³⁵⁹⁹ (mod 37).

(d) Find an number x such that $x^7 \equiv 2 \pmod{37}$

3. (a) Stating clearly any results you use, prove that for any two $n \times n$ matrices A and B, $\det(AB) = \det(A) \det(B)$.

(b) Find det $\begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$, expressing your answer as a product of linear factors.

MATHM12B

PLEASE TURN OVER

- 4. (a) Let A be an $n \times n$ matrix over \mathbb{R} . Give the definition of:
 - (i) an eigenvalue λ of A;
 - (ii) an eigenvector corresponding to λ ;
 - (iii) the eigenspace E_{λ} of A;

(iv) A is diagonalizable (over \mathbb{R}). State (do not prove) the basic criterion for a matrix to be diagonalisable.

(b) Let λ_i (i = 1, ..., r) be the distinct eigenvalues of A; prove that the sum $\sum_{i=1}^r E_{\lambda_i}$ is direct. Deduce that if $\sum_{i=1}^r \dim(E_{\lambda_i}) = n$ then A is diagonalisable.

(c) Prove that the following matrix is diagonalisable:

 $\begin{pmatrix} 2 & 0 & 2 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ -2 & 0 & -2 & -2 \end{pmatrix}$

5. Let $A = \begin{pmatrix} 3/2 & -1 \\ 1/2 & 0 \end{pmatrix}$.

(i) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.

(ii) Find A^n for $n \in \mathbb{N}$

(iii) Solve the system of difference equations

$$\begin{array}{rcl} x_{n+1} &=& \frac{3}{2}x_n &-& y_n \\ y_{n+1} &=& \frac{1}{2}x_n \end{array}$$

given that $x_0 = 0$, $y_0 = 1$.

Find the limit, as $n \longrightarrow \infty$ of x_n .

MATHM12B

CONTINUED

6. (a) Let A be a real symmetric matrix and let \mathbf{u} , \mathbf{v} be eigenvectors associated to the (real) eigenvalues λ and μ respectively, where $\lambda \neq \mu$. Prove that \mathbf{u} and \mathbf{v} are orthogonal vectors.

(b) Let $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Find an orthogonal matrix P such that $P^{-1}AP$ is diagonal.

MATHM12B

END OF PAPER